Problem-Based Learning in Mathematics

Jun 8, 2014 | Stone Ridge
1. Problem-Based Learning in Mathematics
2. The Math Classes Your Teen Needs for College Success
3. 4th Grade Math: What Happens
4. How To Make Math Fun
5. Math at Home
<< Start < Prev 1 2 3 4 5 6 7 8 9 10 Next > End >>

Problem-Based Learning in Mathematics


Problem-Based Learning (PBL) describes a learning environment where problems drive the learning. That is, learning begins with a problem to be solved, and the problem is posed is such a way that students need to gain new knowledge before they can solve the problem. Rather than seeking a single correct answer, students interpret the problem, gather needed information, identify possible solutions, evaluate options, and present conclusions. Proponents of mathematical problem solving insist that students become good problem solvers by learning mathematical knowledge heuristically.

 

Students' successful experiences in managing their own knowledge also helps them solve mathematical problems well (Shoenfeld, 1985; Boaler, 1998). Problem-based learning is a classroom strategy that organizes mathematics instruction around problem solving activities and affords students more opportunities to think critically, present their own creative ideas, and communicate with peers mathematically (Krulik & Rudnick, 1999; Lewellen & Mikusa, 1999; Erickson, 1999; Carpenter et al., 1993; Hiebert et al., 1996; Hiebert et al., 1997).

 

PBL AND PROBLEM SOLVING

 

Since PBL starts with a problem to be solved, students working in a PBL environment must become skilled in problem solving, creative thinking, and critical thinking. Unfortunately, young children's problem-solving abilities seem to have been seriously underestimated. Even kindergarten children can solve basic multiplication problems (Thomas et al., 1993) and children can solve a reasonably broad range of word problems by directly modeling the actions and relationships in the problem, just as children usually solve addition and subtraction problems through direct modeling.

 

Those results are in contrast to previous research assumptions that the structures of multiplication and division problems are more complex than those of addition and subtraction problems. However, this study shows that even kindergarten children may be able to figure out more complex mathematical problems than most mathematics curricula suggest. PBL in mathematics classes would provide young students more opportunities to think critically, represent their own creative ideas, and communicate with their peers mathematically.

 

PBL AND CONSTRUCTIVISM

 

The effectiveness of PBL depends on student characteristics and classroom culture as well as the problem tasks. Proponents of PBL believe that when students develop methods for constructing their own procedures, they are integrating their conceptual knowledge with their procedural skill.

 

Read more at: http://www.vtaide.com/png/ERIC/PBL-in-Math.htm