Mathematicians Report New Discovery About the Dodecahedron

Sep 7, 2020 | Location West County

Mathematicians Report New Discovery About the Dodecahedron

Three mathematicians have resolved a fundamental question about straight paths on the 12-sided Platonic solid.

Erica Klarreich

Contributing Correspondent

 

Even though mathematicians have spent over 2,000 years dissecting the structure of the five Platonic solids — the tetrahedron, cube, octahedron, icosahedron and dodecahedron — there’s still a lot we don’t know about them.

Now, a trio of mathematicians has resolved one of the most basic questions about the dodecahedron.

Suppose you stand at one of the corners of a Platonic solid. Is there some straight path you could take that would eventually return you to your starting point without passing through any of the other corners? For the four Platonic solids built out of squares or equilateral triangles — the cube, tetrahedron, octahedron and icosahedron — mathematicians recently figured out that the answer is no. Any straight path starting from a corner will either hit another corner or wind around forever without returning home. But with the dodecahedron, which is formed from 12 pentagons, mathematicians didn’t know what to expect.

Now Jayadev AthreyaDavid Aulicino and Patrick Hooper have shown that an infinite number of such paths do in fact exist on the dodecahedron. Their paper, published in May in Experimental Mathematics, shows that these paths can be divided into 31 natural families.

The solution required modern techniques and computer algorithms. “Twenty years ago, [this question] was absolutely out of reach; 10 years ago it would require an enormous effort of writing all necessary software, so only now all the factors came together,” wrote Anton Zorich, of the Institute of Mathematics of Jussieu in Paris, in an email.

The project began in 2016 when Athreya, of the University of Washington, and Aulicino, of Brooklyn College, started playing with a collection of card stock cutouts that fold up into the Platonic solids. As they built the different solids, it occurred to Aulicino that a body of recent research on flat geometry might be just what they’d need to understand straight paths on the dodecahedron. “We were literally putting these things together,” Athreya said. “So it was kind of idle exploration meets an opportunity.”

Together with Hooper, of the City College of New York, the researchers figured out how to classify all the straight paths from one corner back to itself that avoid other corners.

Their analysis is “an elegant solution,” said Howard Masur of the University of Chicago. “It’s one of these things where I can say, without any hesitation, ‘Goodness, oh, I wish I had done that!’”

Hidden Symmetries

Although mathematicians have speculated about straight paths on the dodecahedron for more than a century, there’s been a resurgence of interest in the subject in recent years following gains in understanding “translation surfaces.” These are surfaces formed by gluing together parallel sides of a polygon, and they’ve proved useful for studying a wide range of topics involving straight paths on shapes with corners, from billiard table trajectories to the question of when a single light can illuminate an entire mirrored room.

In all these problems, the basic idea is to unroll your shape in a way that makes the paths you are studying simpler. So to understand straight paths on a Platonic solid, you could start by cutting open enough edges to make the solid lie flat, forming what mathematicians call a net. One net for the cube, for example, is a T shape made of six squares.

Imagine that we’ve flattened out the dodecahedron, and now we’re walking along this flat shape in some chosen direction. Eventually we’ll hit the edge of the net, at which point our path will hop to a different pentagon (whichever one was glued to our current pentagon before we cut open the dodecahedron). Whenever the path hops, it also rotates by some multiple of 36 degrees.

To avoid all this hopping and rotating, when we hit an edge of the net we could instead glue on a new, rotated copy of the net and continue straight into it. We’ve added some redundancy: Now we have two different pentagons representing each pentagon on the original dodecahedron. So we’ve made our world more complicated — but our path has gotten simpler. We can keep adding a new net each time we need to expand beyond the edge of our world.

By the time our path has traveled through 10 nets, we’ve rotated our original net through every possible multiple of 36 degrees, and the next net we add will have the same orientation as the one we started with. That means this 11th net is related to the original one by a simple shift — what mathematicians call a translation. Instead of gluing on an 11th net, we could simply glue the edge of the 10th net to the corresponding parallel edge in the original net. Our shape will no longer lie flat on the table, but mathematicians think of it as still “remembering” the flat geometry from its previous incarnation — so, for instance, paths are considered straight if they were straight in the unglued shape. After we do all such possible gluings of corresponding parallel edges, we end up with what is called a translation surface.

The resulting surface is a highly redundant representation of the dodecahedron, with 10 copies of each pentagon. And it’s massively more complicated: It glues up into a shape like a doughnut with 81 holes. Nevertheless, this complicated shape allowed the three researchers to access the rich theory of translation surfaces.

To tackle this giant surface, the mathematicians rolled up their sleeves — figuratively and literally. After working on the problem for a few months, they realized that the 81-holed doughnut surface forms a redundant representation not just of the dodecahedron but also of one of the most studied translation surfaces. Called the double pentagon, it is made by attaching two pentagons along a single edge and then gluing together parallel sides to create a two-holed doughnut with a rich collection of symmetries.

This shape also happened to be tattooed on Athreya’s arm. “The double pentagon was something that I already knew and loved,” said Athreya, who got the tattoo a year before he and Aulicino started thinking about the dodecahedron.

Because the double pentagon and the dodecahedron are geometric cousins, the former’s high degree of symmetry can elucidate the structure of the latter. It’s an “amazing hidden symmetry,” said Alex Eskin of the University of Chicago (who was Athreya’s doctoral adviser about 15 years ago). “The fact that the dodecahedron has this hidden symmetry group is, I think, quite remarkable.”

The relationship between these surfaces meant that the researchers could tap into an algorithm for analyzing highly symmetric translation surfaces developed by Myriam Finster of the Karlsruhe Institute of Technology in Germany. By adapting Finster’s algorithm, the researchers were able to identify all the straight paths on the dodecahedron from a corner to itself, and to classify these paths via the dodecahedron’s hidden symmetries.

The analysis was “one of the most fun projects I’ve gotten to work on in my whole career,” Athreya said. “It’s important to keep playing with things.”

The new result shows that even objects that have been studied for thousands of years can still hold secrets, Eskin said. “I think even for [the three mathematicians], it was very, very surprising to say something new about the dodecahedron.”

 

 

 

Locations near
ME
Ashburn 0.93 mi
43330 Junction Plaza
#160
Ashburn, VA 20147
Sterling 4.07 mi
44 Pidgeon Hill Drive
#100
Sterling, VA 20165
Leesburg 5.69 mi
521 E Market St
#B
Leesburg, VA 20176
Herndon 7.66 mi
2465 Centreville Road
#J2
Herndon, VA 20171
Stone Ridge 7.88 mi
42020 Village Center Plaza
#100
Stone Ridge, VA 20105
Reston 8.62 mi
1424 North Point Village Center
Reston, VA 20194
Purcellville 12.72 mi
1020 E Main St
Ste L
Purcellville, VA 20132
North Potomac 13.58 mi
12150 Darnestown Rd
Gaithersburg, MD 20878
Centreville 14.52 mi
5959 Centreville Crest Ln
Centreville, VA 20121
Fairfax 14.67 mi
11891 Grand Commons Ave
Fairfax, VA 22030
Potomac 14.98 mi
10232 River Road
#B
Potomac, MD 20854
Germantown MD 15.03 mi
12800 Middlebrook Road
Germantown, MD 20874
Tysons 15.45 mi
328 Maple Ave E
#A
Vienna, VA 22180
Haymarket 17.87 mi
15125 Washington St
Haymarket, VA 20169
Rockville 18.19 mi
20 Courthouse Square
#106
Rockville, MD 20850
Mclean 18.23 mi
1320 Old Chain Bridge Road
Suite #190
McLean, VA 22101
Gaithersburg 18.71 mi
9132 Rothbury Drive
Gaithersburg, MD 20886
North Bethesda 20.42 mi
5268 Nicholson Ln
#N
Kensington, MD 20895
Falls Church 20.59 mi
6674 Arlington Blvd
Falls Church, VA 22042
Manassas 20.65 mi
9722 Liberia Ave
Manassas, VA 20110
Bristow 20.71 mi
12705 Braemar Village Pz
Bristow, VA 20136
Burke 20.82 mi
9411 Old Burke Lake Rd
#C
Burke, VA 22015
Bethesda 21.3 mi
4918 Fairmont Ave
Bethesda, MD 20814
Annandale 21.64 mi
7000 Columbia Pike
Annandale, VA 22003
Damascus 22.77 mi
9815 Main St
Damascus, MD 20872
Arlington, VA 23.29 mi
4801 1st St N
Arlington, VA 22203
Cathedral Heights 23.51 mi
3706 Macomb St NW
Washington, D.C., DC 20016
Olney 23.96 mi
18157 Village Center Dr
Olney, MD 20832
Downtown Silver Spring 24.94 mi
1133 East West Highway
Silver Spring, MD 20910
Lorton 25.06 mi
9027 Silverbrook Rd
#A
Fairfax Station, VA 22039
West Washington 25.69 mi

Washington, DC 20009
Alexandria City 25.7 mi
4605 Duke Street
Alexandria, VA 22304
Lake Ridge 26.5 mi
12473 Dillingham Square
Lake Ridge, VA 22192
Frederick North 26.7 mi
905 W. 7th Street
Frederick, MD 21701
Northern Silver Spring 26.75 mi
732 Cloverly Street
Silver Spring, MD 20905
Alexandria 27.17 mi
6483 Old Beulah Street
Alexandria, VA 22315
Warrenton 27.42 mi
512 Fletcher Drive
Warrenton, VA 20186
Mount Airy 28.24 mi
411 E Ridgeville Blvd
Mt Airy, MD 21771
Capitol Hill DC 28.48 mi
621 Pennsylvania Ave SE
1st-floor unit
Washington, DC 20003
Dale City 28.99 mi
5512 Staples Mill Plaza
Dale City, VA 22193
Mount Vernon 29.66 mi
7696 H Richmond Hwy
Alexandria, VA 22306
Beltsville 30.89 mi
10914 Baltimore Ave
#B
Beltsville, MD 20705
Clarksville 31.56 mi
12250 Clarksville Pike
#D
Clarksville, MD 21029
Laurel 35.02 mi
10095 Washington Blvd N
#136
Laurel, MD 20723
Woodmore 35.27 mi
9101 Woodmore Centre Drive
Lanham, MD 20706
Glenn Dale 35.83 mi
10559 Greenbelt Rd
Lanham, MD 20706
Sykesville 36.57 mi
1207 Liberty Rd.
#D-104
Sykesville, MD 21784
Ellicott City 37.11 mi
3290 Pine Orchard Lane
#B
Ellicott City, MD 21042
Winchester 37.62 mi
2512 S Pleasant Valley Rd
Winchester, VA 22601
Columbia 38.19 mi
8827 Centre Park Drive
#F
Columbia, MD 21045
Stafford 39.58 mi
263 Garrisonville Road
#104
Stafford, VA 22554
Bowie 41.26 mi
15231 Hall Rd
Bowie, MD 20721
Waldorf 42.24 mi
3022 Festival Way
Waldorf, MD 20601
Crofton 42.6 mi
1153 Route 3 North
#120
Crofton, MD 21054
Owings Mills 44.15 mi
9433 Common Brook Rd #100
Owings Mills, MD 21117
Pikesville 46.84 mi
1433 Reisterstown Rd
Pikesville, MD 21208
Dunkirk 49.92 mi
10735 Town Center Blvd
#7
Dunkirk, MD 20754