El Método Mathnasium

DÁNDOLE A LOS NIÑOS EL PODER DE ALCANZAR LA EXCELENCIA, EN MATEMÁTICAS Y EN LA VIDA.

Comienza Encontrando Un Centro Local

NUESTRO MÉTODO PATENTADO PERMITE A LOS NIÑOS DESARROLLAR TODO SU POTENCIAL

Durante décadas, el Mathnasium Method™ ha transformado la forma en que los niños aprenden matemáticas. Construimos una base para el dominio de las matemáticas a través de la comprensión profunda,

arrow

El Método Mathnasium

Llevamos a nuestros alumnos por un viaje de aprendizaje, mediante evaluaciones, itinerarios de aprendizaje personalizados y lecciones específicas para la comprensión y el entendimiento.

1

EVALUAR LAS HABILIDADES MATEMÁTICAS DEL NIÑO

Comenzamos con una evaluación integral, que incluye un componente verbal y escrito, para identificar sus fortalezas y debilidades exactas.

2

RUTA DE APRENDIZAJA PERSONALIZADA

Este plan se crea para cada niño en función de su evaluación, para que realmente aprendan y crezcan en su pensamiento matemático.

3

ENSEÑAR PARA ENTENDER

Nuestros instructores expertos no solo enseñan a los estudiantes a memorizar o calcular, les enseñan a entender realmente la forma en que funcionan las matemáticas.

4

LOGRANDO NUESTROS OBJETIVOS

A medida que los estudiantes alcanzan sus metas, son reevaluados y pasan a nuevos desafíos.

DESARROLLO DEL SENTIDO NUMÉRICO

Ésta es la clave del éxito en matemáticas: entender qué significan los números y cómo funcionan juntos. Y el Sentido Numérico no es sólo para niños pequeños. Trabajamos estos temas a través de los niveles que se muestran a continuación antes de pasar al Álgebra y otras disciplinas matemáticas superiores.

  • arrow
    Conteo
    arrow

    Conteo

    Contar es la clave para desbloquear la suma y la resta en el desarrollo temprano de las matemáticas. En Mathnasium, nuestro objetivo inicial es que el alumno se sienta cómodo contando hasta cualquier número, desde cualquier número, por cualquier número, h

    counting
  • arrow
    Enteros y partes
    arrow

    Enteros y partes

    A medida que los estudiantes comienzan a comprender la relación entre un entero y las partes, se puede explorar un mundo de conceptos y ejercicios matemáticos. Una vez que los estudiantes han dominado estas habilidades, tienen pocos problemas con la resol

    counting
  • arrow
    Cantidad y denominación
    arrow

    Cantidad y denominación

    El constructo cantidad y denominación examina dos aspectos del valor numérico. La cantidad pregunta "cuántos" y la denominación pregunta "de qué".

    counting
  • arrow
    Pensamiento proporcional
    arrow

    Pensamiento proporcional

    El pensamiento proporcional establece una base fundamental que conduce a una comprensión más sólida de conceptos críticos como las proporciones, la variación directa e indirecta y el razonamiento algebraico.

    counting
  • arrow
    La ley de la IGUALdad
    arrow

    La ley de la IGUALdad

    La Ley de la IGUALdad es un concepto que los alumnos aplican de forma natural en sus razonamientos sin ser conscientes de ello. Por ejemplo, no se pueden sumar cantidades de manzanas y plátanos si antes no se cambian para que tengan el mismo nombre, que e

    counting
  • arrow
    Conteo
    arrow

    Conteo

    Contar es la clave para desbloquear la suma y la resta en el desarrollo temprano de las matemáticas. En Mathnasium, nuestro objetivo inicial es que el alumno se sienta cómodo contando hasta cualquier número, desde cualquier número, por cualquier número, h

    counting
  • arrow
    Enteros y partes
    arrow

    Enteros y partes

    A medida que los estudiantes comienzan a comprender la relación entre un entero y las partes, se puede explorar un mundo de conceptos y ejercicios matemáticos. Una vez que los estudiantes han dominado estas habilidades, tienen pocos problemas con la resol

    counting
  • arrow
    Cantidad y denominación
    arrow

    Cantidad y denominación

    El constructo cantidad y denominación examina dos aspectos del valor numérico. La cantidad pregunta "cuántos" y la denominación pregunta "de qué".

    counting
  • arrow
    Pensamiento proporcional
    arrow

    Pensamiento proporcional

    El pensamiento proporcional establece una base fundamental que conduce a una comprensión más sólida de conceptos críticos como las proporciones, la variación directa e indirecta y el razonamiento algebraico.

    counting
  • arrow
    La ley de la IGUALdad
    arrow

    La ley de la IGUALdad

    La Ley de la IGUALdad es un concepto que los alumnos aplican de forma natural en sus razonamientos sin ser conscientes de ello. Por ejemplo, no se pueden sumar cantidades de manzanas y plátanos si antes no se cambian para que tengan el mismo nombre, que e

    counting
  • arrow
    Conteo
    arrow

    Conteo

    Contar es la clave para desbloquear la suma y la resta en el desarrollo temprano de las matemáticas. En Mathnasium, nuestro objetivo inicial es que el alumno se sienta cómodo contando hasta cualquier número, desde cualquier número, por cualquier número, h

    counting
  • arrow
    Enteros y partes
    arrow

    Enteros y partes

    A medida que los estudiantes comienzan a comprender la relación entre un entero y las partes, se puede explorar un mundo de conceptos y ejercicios matemáticos. Una vez que los estudiantes han dominado estas habilidades, tienen pocos problemas con la resol

    counting
  • arrow
    Cantidad y denominación
    arrow

    Cantidad y denominación

    El constructo cantidad y denominación examina dos aspectos del valor numérico. La cantidad pregunta "cuántos" y la denominación pregunta "de qué".

    counting
  • arrow
    Pensamiento proporcional
    arrow

    Pensamiento proporcional

    El pensamiento proporcional establece una base fundamental que conduce a una comprensión más sólida de conceptos críticos como las proporciones, la variación directa e indirecta y el razonamiento algebraico.

    counting
  • arrow
    La ley de la IGUALdad
    arrow

    La ley de la IGUALdad

    La Ley de la IGUALdad es un concepto que los alumnos aplican de forma natural en sus razonamientos sin ser conscientes de ello. Por ejemplo, no se pueden sumar cantidades de manzanas y plátanos si antes no se cambian para que tengan el mismo nombre, que e

    counting
  • arrow
    Conteo
    arrow

    Conteo

    Contar es la clave para desbloquear la suma y la resta en el desarrollo temprano de las matemáticas. En Mathnasium, nuestro objetivo inicial es que el alumno se sienta cómodo contando hasta cualquier número, desde cualquier número, por cualquier número, h

    counting
  • arrow
    Enteros y partes
    arrow

    Enteros y partes

    A medida que los estudiantes comienzan a comprender la relación entre un entero y las partes, se puede explorar un mundo de conceptos y ejercicios matemáticos. Una vez que los estudiantes han dominado estas habilidades, tienen pocos problemas con la resol

    counting
  • arrow
    Cantidad y denominación
    arrow

    Cantidad y denominación

    El constructo cantidad y denominación examina dos aspectos del valor numérico. La cantidad pregunta "cuántos" y la denominación pregunta "de qué".

    counting
  • arrow
    Pensamiento proporcional
    arrow

    Pensamiento proporcional

    El pensamiento proporcional establece una base fundamental que conduce a una comprensión más sólida de conceptos críticos como las proporciones, la variación directa e indirecta y el razonamiento algebraico.

    counting
  • arrow
    La ley de la IGUALdad
    arrow

    La ley de la IGUALdad

    La Ley de la IGUALdad es un concepto que los alumnos aplican de forma natural en sus razonamientos sin ser conscientes de ello. Por ejemplo, no se pueden sumar cantidades de manzanas y plátanos si antes no se cambian para que tengan el mismo nombre, que e

    counting
  • arrow
    Conteo
    arrow

    Conteo

    Contar es la clave para desbloquear la suma y la resta en el desarrollo temprano de las matemáticas. En Mathnasium, nuestro objetivo inicial es que el alumno se sienta cómodo contando hasta cualquier número, desde cualquier número, por cualquier número, h

    counting
  • arrow
    Enteros y partes
    arrow

    Enteros y partes

    A medida que los estudiantes comienzan a comprender la relación entre un entero y las partes, se puede explorar un mundo de conceptos y ejercicios matemáticos. Una vez que los estudiantes han dominado estas habilidades, tienen pocos problemas con la resol

    counting
  • arrow
    Cantidad y denominación
    arrow

    Cantidad y denominación

    El constructo cantidad y denominación examina dos aspectos del valor numérico. La cantidad pregunta "cuántos" y la denominación pregunta "de qué".

    counting
  • arrow
    Pensamiento proporcional
    arrow

    Pensamiento proporcional

    El pensamiento proporcional establece una base fundamental que conduce a una comprensión más sólida de conceptos críticos como las proporciones, la variación directa e indirecta y el razonamiento algebraico.

    counting
  • arrow
    La ley de la IGUALdad
    arrow

    La ley de la IGUALdad

    La Ley de la IGUALdad es un concepto que los alumnos aplican de forma natural en sus razonamientos sin ser conscientes de ello. Por ejemplo, no se pueden sumar cantidades de manzanas y plátanos si antes no se cambian para que tengan el mismo nombre, que e

    counting
  • arrow
    Conteo
    arrow

    Conteo

    Contar es la clave para desbloquear la suma y la resta en el desarrollo temprano de las matemáticas. En Mathnasium, nuestro objetivo inicial es que el alumno se sienta cómodo contando hasta cualquier número, desde cualquier número, por cualquier número, h

    counting
  • arrow
    Enteros y partes
    arrow

    Enteros y partes

    A medida que los estudiantes comienzan a comprender la relación entre un entero y las partes, se puede explorar un mundo de conceptos y ejercicios matemáticos. Una vez que los estudiantes han dominado estas habilidades, tienen pocos problemas con la resol

    counting
  • arrow
    Cantidad y denominación
    arrow

    Cantidad y denominación

    El constructo cantidad y denominación examina dos aspectos del valor numérico. La cantidad pregunta "cuántos" y la denominación pregunta "de qué".

    counting
  • arrow
    Pensamiento proporcional
    arrow

    Pensamiento proporcional

    El pensamiento proporcional establece una base fundamental que conduce a una comprensión más sólida de conceptos críticos como las proporciones, la variación directa e indirecta y el razonamiento algebraico.

    counting
  • arrow
    La ley de la IGUALdad
    arrow

    La ley de la IGUALdad

    La Ley de la IGUALdad es un concepto que los alumnos aplican de forma natural en sus razonamientos sin ser conscientes de ello. Por ejemplo, no se pueden sumar cantidades de manzanas y plátanos si antes no se cambian para que tengan el mismo nombre, que e

    counting
  • arrow
    Conteo
    arrow

    Conteo

    Contar es la clave para desbloquear la suma y la resta en el desarrollo temprano de las matemáticas. En Mathnasium, nuestro objetivo inicial es que el alumno se sienta cómodo contando hasta cualquier número, desde cualquier número, por cualquier número, h

    counting
  • arrow
    Enteros y partes
    arrow

    Enteros y partes

    A medida que los estudiantes comienzan a comprender la relación entre un entero y las partes, se puede explorar un mundo de conceptos y ejercicios matemáticos. Una vez que los estudiantes han dominado estas habilidades, tienen pocos problemas con la resol

    counting
  • arrow
    Cantidad y denominación
    arrow

    Cantidad y denominación

    El constructo cantidad y denominación examina dos aspectos del valor numérico. La cantidad pregunta "cuántos" y la denominación pregunta "de qué".

    counting
  • arrow
    Pensamiento proporcional
    arrow

    Pensamiento proporcional

    El pensamiento proporcional establece una base fundamental que conduce a una comprensión más sólida de conceptos críticos como las proporciones, la variación directa e indirecta y el razonamiento algebraico.

    counting
  • arrow
    La ley de la IGUALdad
    arrow

    La ley de la IGUALdad

    La Ley de la IGUALdad es un concepto que los alumnos aplican de forma natural en sus razonamientos sin ser conscientes de ello. Por ejemplo, no se pueden sumar cantidades de manzanas y plátanos si antes no se cambian para que tengan el mismo nombre, que e

    counting
  • arrow
    Conteo
    arrow

    Conteo

    Contar es la clave para desbloquear la suma y la resta en el desarrollo temprano de las matemáticas. En Mathnasium, nuestro objetivo inicial es que el alumno se sienta cómodo contando hasta cualquier número, desde cualquier número, por cualquier número, h

    counting
  • arrow
    Enteros y partes
    arrow

    Enteros y partes

    A medida que los estudiantes comienzan a comprender la relación entre un entero y las partes, se puede explorar un mundo de conceptos y ejercicios matemáticos. Una vez que los estudiantes han dominado estas habilidades, tienen pocos problemas con la resol

    counting
  • arrow
    Cantidad y denominación
    arrow

    Cantidad y denominación

    El constructo cantidad y denominación examina dos aspectos del valor numérico. La cantidad pregunta "cuántos" y la denominación pregunta "de qué".

    counting
  • arrow
    Pensamiento proporcional
    arrow

    Pensamiento proporcional

    El pensamiento proporcional establece una base fundamental que conduce a una comprensión más sólida de conceptos críticos como las proporciones, la variación directa e indirecta y el razonamiento algebraico.

    counting
  • arrow
    La ley de la IGUALdad
    arrow

    La ley de la IGUALdad

    La Ley de la IGUALdad es un concepto que los alumnos aplican de forma natural en sus razonamientos sin ser conscientes de ello. Por ejemplo, no se pueden sumar cantidades de manzanas y plátanos si antes no se cambian para que tengan el mismo nombre, que e

    counting

MATHNASIUM ENSEÑA CÓMO APRENDE MEJOR UN NIÑO

Utilizamos una combinación de técnicas mentales, verbales, visuales, táctiles y escritas para construir el conocimiento matemático nivel a nivel, para que lo entiendan, lo dominen y lo disfruten.

Utilizando la mente para resolver problemas sin poner el lápiz sobre el papel.
arrow
Utilizando la mente para resolver problemas sin poner el lápiz sobre el papel.
Utilizando imágenes, figuras, gráficos, andamiaje y otras indicaciones visuales para comprender y resolver problemas.
arrow
Utilizando imágenes, figuras, gráficos, andamiaje y otras indicaciones visuales para comprender y resolver problemas.
Utilizando las palabras habladas como guía para comprender y resolver problemas.
arrow
Utilizando las palabras habladas como guía para comprender y resolver problemas.
Tocando o manipulando objetos físicos para comprender y resolver problemas.
arrow
Tocando o manipulando objetos físicos para comprender y resolver problemas.
Utilizando números, textos y símbolos escritos para comprender y resolver problemas.
arrow
Utilizando números, textos y símbolos escritos para comprender y resolver problemas.

NUESTROS RESULTADOS

Los resultados son transformadores: las familias verán cambios cuantificables en la actitud, la confianza y el progreso escolar.

Consulte nuestros resultados
94%

Habilidades matemáticas

de los padres informan de una mejora en las habilidades y la comprensión matemáticas de sus hijos.

93%

Actitud

de los padres afirman haber mejorado su actitud hacia las matemáticas después de asistir a Mathnasium.

90%

Calificaciones

de los alumnos mejoraron sus notas escolares.

Excelente lugar para aprender matemáticas! Todos los maestros y la directora Edith siempre muy atentos y dedicados con los niños.

Debbie Ríos, madre, Mathnasium Senderos

  • review star icon
  • review star icon
  • review star icon
  • review star icon
  • review star icon

Ethan está muy contento con sus clases!!

P. Franco
  • review star icon
  • review star icon
  • review star icon
  • review star icon
  • review star icon

Si lo recomiendo, porque he visto buenos resultados en mi hija, y si estoy haciendo un gran esfuerzo para el p...

S. Jimenez

AYUDE A SU HIJO A DESCUBRIR SU POTENCIAL MATEMÁTICO

Contamos con más de 1,100 centros de aprendizaje de matemáticas en todo el mundo. Empieza ahora.

Es tan fácil como:
  • Buscar un centro
  • Obtener una evaluación de habilidades matemáticas
  • Hablar con el director de su centro sobre el plan de aprendizaje personalizado para su hijo
Comienza Encontrando Un Centro Local