THE MATHNASIUM METHOD™

Giving children the power to achieve excellence—in math and in life.

Get Started by Finding a Local Center

Our proprietary method allows kids to reach their full potential

For decades the Mathnasium Method™ has transformed the way kids learn math. We build a foundation for math mastery through deep understanding by starting with what they already know, addressing any learning gaps, expanding their mathematical thinking, and adding new concepts in sequence. This proprietary method works for kids of all ages and skill levels, whether they’re struggling in math, doing okay but could be doing better, or are already excelling but need more of a challenge. When kids see what they can achieve because of their proficiency in math, it can alter the course of their entire lives.

Musical Notes

The Mathnasium Method™

We take our students on a journey of learning – through assessment, customized learning paths and targeted lessons for understanding and comprehension.

an illustration of the solar system

1

Assess Child’s Math Skills

We begin with a comprehensive assessment, which includes both a verbal and written component, to pinpoint their exact strengths and weaknesses.

city yellow bus

2

Customized Learning Path

This plan is created for each child based on their assessment, so they will truly learn and grow in their mathematical thinking.

a graphic of a theme park

3

Teach for Understanding

Our expert instructors don’t just teach students to memorize or calculate; they teach them to truly understand the way math works.

an illustration of the ocean and ships

4

Achieving Our Goals

As students achieve their goals, they are reassessed and move on to new challenges.

an illustration of an astronaut in space

BUILDING NUMBER SENSE

This is the key to success in math—the understanding of what numbers mean and how they work together. And Number Sense isn't just for young kids. We work on these topics through the levels shown below before moving on to Algebra and other higher math disciplines.

  • Counting

    Counting

    Counting is the key to unlocking addition and subtraction in early math development. At Mathnasium, our initial goal is to have a student become comfortable with counting to any number, from any number, by any number, forward and backwards.

  • Wholes And Parts

    Wholes And Parts

    As students begin to understand the relationship between a whole and the parts, a world of mathematical concepts and exercises can be explored. Once students have mastered these skills, they have little trouble with algebraic problem-solving.

  • Quantity and Denomination

    Quantity and Denomination

    The quantity and denomination construct examine two aspects of numerical value. Quantity asks “how many” and denomination asks “of what.”

  • Proportional Thinking

    Proportional Thinking

    Proportional thinking establishes a fundamental base that leads to a stronger understanding of critical concepts like ratios, direct and indirect variation, and algebraic reasoning.

  • The Law of SAMEness

    The Law of SAMEness

    The Law of SAMEness is a concept students naturally apply in their reasoning without being aware of it. For example, quantities of apples and bananas cannot be added together unless first being changed so that they have the same name, which is fruit.

  • Counting

    Counting

    Counting is the key to unlocking addition and subtraction in early math development. At Mathnasium, our initial goal is to have a student become comfortable with counting to any number, from any number, by any number, forward and backwards.

  • Wholes and Parts

    Wholes and Parts

    As students begin to understand the relationship between a whole and the parts, a world of mathematical concepts and exercises can be explored. Once students have mastered these skills, they have little trouble with algebraic problem-solving.

  • Quantity and Denomination

    Quantity and Denomination

    The quantity and denomination construct examine two aspects of numerical value. Quantity asks “how many” and denomination asks “of what.”

  • Proportional Thinking

    Proportional Thinking

    Proportional thinking establishes a fundamental base that leads to a stronger understanding of critical concepts like ratios, direct and indirect variation, and algebraic reasoning.

  • The Law of SAMEness

    The Law of SAMEness

    The Law of SAMEness is a concept students naturally apply in their reasoning without being aware of it. For example, quantities of apples and bananas cannot be added together unless first being changed so that they have the same name, which is fruit.

  • Counting

    Counting

    Counting is the key to unlocking addition and subtraction in early math development. At Mathnasium, our initial goal is to have a student become comfortable with counting to any number, from any number, by any number, forward and backwards.

  • Wholes and Parts

    Wholes and Parts

    As students begin to understand the relationship between a whole and the parts, a world of mathematical concepts and exercises can be explored. Once students have mastered these skills, they have little trouble with algebraic problem-solving.

  • Quantity and Denomination

    Quantity and Denomination

    The quantity and denomination construct examine two aspects of numerical value. Quantity asks “how many” and denomination asks “of what.”

  • Proportional Thinking

    Proportional Thinking

    Proportional thinking establishes a fundamental base that leads to a stronger understanding of critical concepts like ratios, direct and indirect variation, and algebraic reasoning.

  • The Law of SAMEness

    The Law of SAMEness

    The Law of SAMEness is a concept students naturally apply in their reasoning without being aware of it. For example, quantities of apples and bananas cannot be added together unless first being changed so that they have the same name, which is fruit.

  • Counting

    Counting

    Counting is the key to unlocking addition and subtraction in early math development. At Mathnasium, our initial goal is to have a student become comfortable with counting to any number, from any number, by any number, forward and backwards.

  • Wholes and Parts

    Wholes and Parts

    As students begin to understand the relationship between a whole and the parts, a world of mathematical concepts and exercises can be explored. Once students have mastered these skills, they have little trouble with algebraic problem-solving.

  • Quantity and Denomination

    Quantity and Denomination

    The quantity and denomination construct examine two aspects of numerical value. Quantity asks “how many” and denomination asks “of what.”

  • Proportional Thinking

    Proportional Thinking

    Proportional thinking establishes a fundamental base that leads to a stronger understanding of critical concepts like ratios, direct and indirect variation, and algebraic reasoning.

  • The Law of SAMEness

    The Law of SAMEness

    The Law of SAMEness is a concept students naturally apply in their reasoning without being aware of it. For example, quantities of apples and bananas cannot be added together unless first being changed so that they have the same name, which is fruit.

  • Counting

    Counting

    Counting is the key to unlocking addition and subtraction in early math development. At Mathnasium, our initial goal is to have a student become comfortable with counting to any number, from any number, by any number, forward and backwards.

  • Wholes and Parts

    Wholes and Parts

    As students begin to understand the relationship between a whole and the parts, a world of mathematical concepts and exercises can be explored. Once students have mastered these skills, they have little trouble with algebraic problem-solving.

  • Quantity and Denomination

    Quantity and Denomination

    The quantity and denomination construct examine two aspects of numerical value. Quantity asks “how many” and denomination asks “of what.”

  • Proportional Thinking

    Proportional Thinking

    Proportional thinking establishes a fundamental base that leads to a stronger understanding of critical concepts like ratios, direct and indirect variation, and algebraic reasoning.

  • The Law of SAMEness

    The Law of SAMEness

    The Law of SAMEness is a concept students naturally apply in their reasoning without being aware of it. For example, quantities of apples and bananas cannot be added together unless first being changed so that they have the same name, which is fruit.

  • Counting

    Counting

    Counting is the key to unlocking addition and subtraction in early math development. At Mathnasium, our initial goal is to have a student become comfortable with counting to any number, from any number, by any number, forward and backwards.

  • Wholes and Parts

    Wholes and Parts

    As students begin to understand the relationship between a whole and the parts, a world of mathematical concepts and exercises can be explored. Once students have mastered these skills, they have little trouble with algebraic problem-solving.

  • Quantity and Denomination

    Quantity and Denomination

    The quantity and denomination construct examine two aspects of numerical value. Quantity asks “how many” and denomination asks “of what.”

  • Proportional Thinking

    Proportional Thinking

    Proportional thinking establishes a fundamental base that leads to a stronger understanding of critical concepts like ratios, direct and indirect variation, and algebraic reasoning.

  • The Law of SAMEness

    The Law of SAMEness

    The Law of SAMEness is a concept students naturally apply in their reasoning without being aware of it. For example, quantities of apples and bananas cannot be added together unless first being changed so that they have the same name, which is fruit.

  • Counting

    Counting

    Counting is the key to unlocking addition and subtraction in early math development. At Mathnasium, our initial goal is to have a student become comfortable with counting to any number, from any number, by any number, forward and backwards.

  • Wholes and Parts

    Wholes and Parts

    As students begin to understand the relationship between a whole and the parts, a world of mathematical concepts and exercises can be explored. Once students have mastered these skills, they have little trouble with algebraic problem-solving.

  • Quantity and Denomination

    Quantity and Denomination

    The quantity and denomination construct examine two aspects of numerical value. Quantity asks “how many” and denomination asks “of what.”

  • Proportional Thinking

    Proportional Thinking

    Proportional thinking establishes a fundamental base that leads to a stronger understanding of critical concepts like ratios, direct and indirect variation, and algebraic reasoning.

  • The Law of SAMEness

    The Law of SAMEness

    The Law of SAMEness is a concept students naturally apply in their reasoning without being aware of it. For example, quantities of apples and bananas cannot be added together unless first being changed so that they have the same name, which is fruit.

  • Counting

    Counting

    Counting is the key to unlocking addition and subtraction in early math development. At Mathnasium, our initial goal is to have a student become comfortable with counting to any number, from any number, by any number, forward and backwards.

  • Wholes and Parts

    Wholes and Parts

    As students begin to understand the relationship between a whole and the parts, a world of mathematical concepts and exercises can be explored. Once students have mastered these skills, they have little trouble with algebraic problem-solving.

  • Quantity and Denomination

    Quantity and Denomination

    The quantity and denomination construct examine two aspects of numerical value. Quantity asks “how many” and denomination asks “of what.”

  • Proportional Thinking

    Proportional Thinking

    Proportional thinking establishes a fundamental base that leads to a stronger understanding of critical concepts like ratios, direct and indirect variation, and algebraic reasoning.

  • The Law of SAMEness

    The Law of SAMEness

    The Law of SAMEness is a concept students naturally apply in their reasoning without being aware of it. For example, quantities of apples and bananas cannot be added together unless first being changed so that they have the same name, which is fruit.

Mathnasium teaches how a child learns best

We use a combination of mental, verbal, visual, tactile, and written techniques to build math knowledge level by level, so they understand it, master it, and enjoy it.

Using your mind to solve problems without putting pen to paper.
math tutor using gestures to explain math concepts
Using your mind to solve problems without putting pen to paper.
Using pictures, figures, graphs, scaffolding, and other visual prompts to understand and solve problems.
math tutor using visual props to explain math concepts
Using pictures, figures, graphs, scaffolding, and other visual prompts to understand and solve problems.
Using spoken words as a guide to understand and solve problems.
Using spoken words as a guide to understand and solve problems.
Touching or manipulating physical objects to understand and solve problems.
math props used for learning
Touching or manipulating physical objects to understand and solve problems.
Using written numbers, text, and symbols to understand and solve problems.
the hand of a student filling a math test
Using written numbers, text, and symbols to understand and solve problems.

OUR RESULTS

The results are transformative - families will see measurable changes in attitude, confidence, and school progress.

See Our Results
94%

Math Skills

of parents report an improvement in their child’s math skills and understanding.

93%

Attitude

of parents report improved attitude toward math after attending Mathnasium.

90%

Grades

of students saw an improvement in their school grades.

mother and young daughter smiling mother and young daughter smiling
Red Quote

Math went from being a seemingly insurmountable challenge for our son to being one of his strongest subjects in school.

Loreana C., Parent, Newton Center

  • rating star
  • rating star
  • rating star
  • rating star
  • rating star

Mathnasium really take their time to teach each student by starting at a baseline assessment. This has allowed...

s. franklin
  • rating star
  • rating star
  • rating star
  • rating star
  • rating star

The tutors are very knowledgeable and patient. Staff is proactive and engages parents. Sessions are having a...

M. Gonzalez

Help Your Child Discover Their Math Potential

We have nearly 1,000 centers nationwide. Get started now.

It’s as easy as:

  • Find a location
  • Get a math skills assessment
  • Talk to your Center Director about your customized learning plan for you child
math props used for explaining math concepts
Get Started by Finding a Local Center
Loading