Meet the Newest (and Largest) Prime Number!

Jan 28, 2016 | Sherman Oaks

We're rolling out the welcome mat to celebrate the newest prime number, which was discovered last week! What is a prime number, you ask? It's a whole number that has exactly two distinct factors, namely 1 and itself! As an example, 7, is a prime number—it has two factors, 1 and 7. On the other hand, 1 is not a prime number—it has two factors, 1 and 1... but they're not distinct.

There are an infinite number of primes, so it's not surprising that the newest prime is quite large:

274,207,281 − 1

That being said, it also comes as no surprise that this prime was discovered by a computer! Per The New York Times, "In a computer laboratory at a satellite campus of the University of Central Missouri, an otherwise nondescript desktop computer, machine No. 5 in Room 143, multiplied 74,207,281 twos together and subtracted 1. It then checked that this number was not divisible by any positive integer except 1 and itself — the definition of a prime number." Furthermore, "As integers get bigger, prime numbers become rarer, but there is always a bigger prime number to be found."

Here are some fun facts about the newest prime and prime numbers in general:

•  The newest prime is a Mersenne prime, which means it is expressed in the form 2n - 1.

•  It was discovered by the Great Internet Mersenne Prime Search, a group of volunteers dedicated to searching for Mersenne primes!

•  ... it also has 22,338,618 digits.

•  2 is the only even prime number!

•  To determine if a number is prime, it is sufficient to show that no prime number less than or equal the square root of the number is a factor of the number.

Now, people love memorizing the digits of pi... but how about the primes? Here's a list of the first 300 prime numbers—just for fun, how many can you memorize?


2   3   5   7   11  13  17  19  23  29
31  37  41  43  47  53  59  61  67  71
73  79  83  89  97  101  103  107  109  113
127  131  137  139  149  151  157  163  167  173
179  181  191  193  197  199  211  223  227  229
233  239  241  251  257  263  269  271  277  281
283  293  307  311  313  317  331  337  347  349
353  359  367  373  379  383  389  397  401  409
419  421  431  433  439  443  449  457  461  463
467  479  487  491  499  503  509  521  523  541
547  557  563  569  571  577  587  593  599  601
607  613  617  619  631  641  643  647  653  659
661  673  677  683  691  701  709  719  727  733
739  743  751  757  761  769  773  787  797  809
811  821  823  827  829  839  853  857  859  863
877  881  883  887  907  911  919  929  937  941
947  953  967  971  977  983  991  997  1009  1013
1019  1021  1031  1033  1039  1049  1051  1061  1063  1069
1087  1091  1093  1097  1103  1109  1117  1123  1129  1151
1153  1163  1171  1181  1187  1193  1201  1213  1217  1223
1229  1231  1237  1249  1259  1277  1279  1283  1289  1291
1297  1301  1303  1307  1319  1321  1327  1361  1367  1373
1381  1399  1409  1423  1427  1429  1433  1439  1447  1451
1453  1459  1471  1481  1483  1487  1489  1493  1499  1511
1523  1531  1543  1549  1553  1559  1567  1571  1579  1583
1597  1601  1607  1609  1613  1619  1621  1627  1637  1657
1663  1667  1669  1693  1697  1699  1709  1721  1723  1733
1741  1747  1753  1759  1777  1783  1787  1789  1801  1811
1823  1831  1847  1861  1867  1871  1873  1877  1879  1889
1901  1907  1913  1931  1933  1949  1951  1973  1979  1987